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Abstract

The adoption of automated, data-driven decision making in an ever expanding
range of applications has raised concerns about its potential unfairness towards
certain social groups. In this context, a number of recent studies have focused on
debning, detecting, and removing unfairness from data-driven decision systems.
However, the existing notions of fairness, basegbarity (equality) in treatment

or outcomes for different social groups, tend to be quite stringent, limiting the
overall decision making accuracy. In this paper, we draw inspiration from the fair-
division and envy-freeness literature in economics and game theory and propose
preferencebased notions of fairnessNgiven the choice between various sets of
decision treatments or outcomes, any group of users would collectively prefer its
treatment or outcomes, regardless of the (dis)parity as compared to the other groups.
Then, we introduce tractable proxies to design margin-based classibers that satisfy
these preference-based notions of fairness. Finally, we experiment with a variety
of synthetic and real-world datasets and show that preference-based fairness allows
for greater decision accuracy than parity-based fairness.

1 Introduction

As machine learning is increasingly being used to automate decision making in domains that affect
human lives €.g, credit ratings, housing allocation, recidivism risk prediction), there are growing
concerns about the potential fonfairnessn such algorithmic decision2B, 25]. A Burry of recent
research on fair learning has focused on debning appropriate notions of fairness and then designing
mechanisms to ensure fairness in automated decision makid 4, 18, 19, 20, 21, 28, 32, 33, 34).

Existing notions of fairness in the machine learning literature are largely inspired by the concept of
discrimination in social sciences and law. These notions callfarity (i.e., equality) intreatment,

in impact, or both. To ensure parity in treatment (or treatment parity), decision making systems need
to avoid using usersO sensitive attribute informatienavoid using the membership information in
socially salient groups(g, gender, race), which are protected by anti-discrimination laws(J. As

a result, the use of group-conditional decision making systems is often prohibited. To ensure parity in
impact (or impact parity), decision making systems need to avoid disparity in the fraction of users
belonging to different sensitive attribute groupsy, men, women) that receilenebciallecision
outcomes. A number of learning mechanisms have been proposed to achieve parity in treafment [

An open-source code implementation of our scheme is availabletpt//fate-computing.mpi-sws.org/
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Figure 1: A pctitious decision making scenario involving two groups: men (M) and women (W). Féature
(x-axis) is highly predictive for women wherefs (y-axis) is highly predictive for men. Green (red) quadrants
denote the positive (negative) class. Within each quadrant, the points are distributed uniformly and the numbers
in parenthesis denote the number of subjects in that quadrantleflpanel shows the optimal classiber
satisfying parity in treatment. This classiPer leads to all the men getting classibed as negativeddide

panel shows the optimal classiber satisfying parity in impact (in addition to parity in treatment). This classiber
achieves impact parity by misclassifying women from positive class into negative class, and in the process,
incurs a signibcant cost in terms of accuracy. Tight panel shows a classiber consisting of group-conditional
classipers for men (purple) and women (blue). Both the classiPers satisfy the preferred treatment criterion since
for each group, adopting the other groupOs classiber would lead to a smaller fraction of benebcial outcomes.
Additionally, this group-conditional classiber is also a preferred impact classiber since both groups get more
benebt as compared to the impact parity classiber. The overall accuracy is better than the parity classibers.

parity in impact [/, 18, 21] or both [12, 14, 17, 20, 32, 33, 34]. However, these mechanisms pay a
signibcant cost in terms of the accuracy (or utility) of their predictions. In fact, there exist some
inherent tradeoffs (both theoretical and empirical) between achieving high prediction accuracy and
satisfying treatment and / or impact pari§; L1, 15, 22].

In this work, we introduce, formalize and evaluate new notions of fairness that are inspired by the
concepts ofair division andenvy-freenessn economics and game theory, 6, 31]. Our work

is motivated by the observation that, in certain decision making scenarios, the existing parity-based
fairness notions may be too stringent, precluding more accurate decisions, which may also be desired
by every sensitive attribute group. To relax these parity-based notions, we introduce the concept of a
usergroupOs preferencéor being assigned one set of decision outcomes over another. Given the
choice between various sets of decision outcomes, any group of users would collgutfeiyhe

set that containthe largest fractior(or the greatest number) of benebcial decision outcomes for that
group?® More specibcally, our new preference-based notions of fairness, which we formally dePne in
the next section, use the concept of user groupOs preference as follows:

N From Parity Treatment to Preferred Treatment: To offer preferred treatment, a decision making
system should ensure that every sensitive attribute greigp fnen and womem)refersthe set of
decisions they receive over the set of decisions they would have received had they collectively
presented themselves to the system as members of a different sensitive group.

The preferred treatment criterion represents a relaxation of treatment parity. That is, every decision
making system that achieves treatment parity also satispes the preferred treatment condition, which
implies (in theory) that the optimal decision accuracy that can be achieved under the preferred
treatment condition is at least as high as the one achieved under treatment parity. Additionally,
preferred treatment allows group-conditional decision making (not allowed by treatment parity),
which is necessary to achieve high decision accuracy in scenarios when the predictive power of
features varies greatly between different sensitive user grdighsals shown in Figuré.

While preferred treatment is a looser notion of fairness than treatment parity, it retains a core fairness
property embodied in treatment parity, namelgyy-freeness at the level of user graupsder
preferred treatment, no group of useegy, men or women, blacks or whites) would feel that they
would be collectively better off by switching their group membersleig( gender, race). Thus,

1AIthough it is quite possible that certaimdividualsfrom the group may not prefer the set that maximizes the benebt fgréog as a
whole



preferred treatment decision making, despite allowing group-conditional decision making, is not
vulnerable to being characterized as Oreverse discriminationO against, or "afbrmative actionO for
certain groups.

N From Parity Impact to Preferred Impact: To offer preferred impact, a decision making system
needs to ensure that every sensitive attribute greup (Men and womemrefersthe set of decisions
they receive over the set of decisions they would have received under the criterion of impact parity.

The preferred impact criterion represents a relaxation of impact parity. That is, every decision making

system that achieves impact parity also satisbes the preferred impact condition, which implies (in
theory) that the optimal decision accuracy that can be achieved under the preferred impact condition
is at least as high as the one achieved under impact parity. Additionally, preferred impact allows

disparity in benebts received by different groups, which may be justiPed in scenarios where insisting
on impact parity would only lead to a reduction in the benebcial outcomes received by one or more
groups, without necessarily improving them for any other group. In such scenarios, insisting on

impact parity can additionally lead to a reduction in the decision accuracy, creating a case of tragedy
of impact parity with a worse decision making all round, as shown in Figure

While preferred impact is a looser notion of fairness compared to impact parity, by guaranteeing
that every group receives leastas many benepbcial outcomes as they would would have received
under impact parity, it retains the core fairness gains in benebpcial outcomes that discriminated groups
would have achieved under the fairness criterion of impact parity.

Finally, we note that our preference-based fairness notions, while having many attractive properties,
are not the most suitable notions of fairnesalinrscenarios. In certain cases, parity fairness may well
be the eventual goaB] and the more desirable notion.

In the remainder of this paper, we formalize our preference-based fairness notions in the context
of binary classibcation (Sectid), propose tractable and efbcient proxies to include these notions

in the formulations of convex margin-based classibers in the form of convex-concave constraints

(Section3), and show on several real world datasets that our preference-based fairness notions can
provide signibcant gains in overall decision making accuracy as compared to parity-based fairness
(Sectiond).

2 DePning preference-based fairness for classibcation

In this section, we will bPrst introduce two useful quality metriostlity andgroup benetin the

context of fairness in classibcation, then revisit parity-based fairness debnitions in the light of these
quality metrics, and Pnally formalize the two preference-based notions of fairness introduced in
Sectionl from the perspective of the above metrics. For simplicity, we consider binary classibcation
tasks, however, the debnitions can be easily extended to m-ary classibcation.

Quality metrics in fair classibcation. In a fair (binary) classibcation task, one needs to bnd a
mapping between the user feature vectors RY and class labelg ! {" 1,1}, where(x,y)

are drawn from an (unknown) distributidr(x,y). This is often achieved by bPnding a mapping
function! : RY# R such that given a feature vectowith an unknown labey, the corresponding
classiber predicty = sign(! (x)). However, this mapping function also needs tddie with respect

to the values of a user sensitive attribaté Z $ Z, ¢ (e.g, sex, race), which are drawn from
an (unknown) distributiofi (z) and may be dependent of the feature vectors and class labgls,

f(x,y,2) = T (x,y|2)f (2) %1 (x,y)f (2).

Given the above problem setting, we introduce the following quality metrics, which we will use to
debne and compare different fairness notions:

I. Utility ( U): overall probt obtained by the decision maker using the classiber. For example, in a
loan approval scenario, the decision maker is the bank that gives the loan and the utility can be
the overall accuracy of the classibieg,:.

U(t) = Exyli{sign( (x)) = y}],
wherel (g denotes the indicator function and the expectation is taken over the distribution
f (x,y). Itisin the decision makerOs interest to use classibers that maximize utility. Moreover,
depending on the scenario, one can attribute different probt to true positives and true negativesN
or conversely, different cost to false negatives and false positivesNwhile computing utility. For



example, in the loan approval scenario, marking an eventual defaulter as non-defaulter may have
a higher cost than marking a non-defaulter as defaulter. For simplicity, in the remainder of the
paper, we will assume that the probt (cost) for true (false) positives and negatives is the same.

II. Group benebt B;): the fraction of benebcial outcomes received by users sharing a certain value
of the sensitive attribute (e.g, blacks, hispanics, whites). For example, in a loan approval
scenario, the benebcial outcome for a user may be receiving the loan and the group benept for
each value of can be debned as:

B2(!) = Exj[I{sign(! (x)) =1}],
where the expectation is taken over the conditional distributioriz) and the bank offers a loan
to a user ifsign(! (x)) = 1. Moreover, as suggested by some recent studies in fairness-aware
learning [L8, 22, 32], the group benebpts can also be debned as the fraction of benebcial outcomes
conditional on the true label of the user. For example, in a recidivism prediction scenario, the
group benebts can be debned as the fraction of eventually non-offending defendants sharing a
certain sensitive attribute value getting bail, that is:

Bz(!) = Exjzy=1 [{sign(* (x)) =1}],

where the expectation is taken over the conditional distribudtiorjz,y = 1),y = 1 indicates
that the defendant does not re-offend, and bail is grantgdnif(! (x)) =1 .

Parity-based fairness. A number of recent studie§,[14, 18, 21, 32, 33, 34] have considered a
classiber to be fair if it satispes the impact parity criterion. That is, it ensures that the group benebts
for all the sensitive attribute values are equal;

B,(!)= B (!) forallz,z!Z . (1)
In this context, different (or often same) debnitions of group benebt (or benebcial outcome) have
lead to different terminologye.g, disparate impactl, 33], indirect discrimination 14, 21], redlin-
ing [7], statistical parity 12, 11, 22, 34], disparate mistreatmen3¥], or equality of opportunity18].
However, all of these group benebt debnitions invariably focus on achieving impact parity. We
point interested readers to Feldman et &] pnd Zafar et al.32] regarding the discussion on this
terminology.

Although not always explicitly sought, most of the above studies propose classibers that also satisfy
treatment parity in addition to impact paritye., they do not use the sensitive attribatén the
decision making process. However, some of thémi§, 21] do not satisfy treatment parity since
they resort to group-conditional classipérs, ! = {!;},4z . In such case, we can rewrite the above
parity condition as: )

B.(!;)= B,(!,) forallz,z!'Z . (2)

Fairness beyond parity. Given the above quality metrics, we can now formalize the two preference-
based fairness notions introduced in Secfion

N Preferred treatment: if a classibet resorts to group-conditional classipérs, ! = {!;} 4z ,
it is a preferred treatment classiber if each group sharing a sensitive attribute \wdoebts
more from its corresponding group-conditional classikethan it would benebpt if it would be
classibed by any of the other group-conditional classibgts.e.,

B,(!,) &B,(! ) forallz,z'!Z . 3)
Note that, if a classibér does not resort to group-conditional classibees,!, = ! for all
z ! Z , itwill be always be a preferred treatment classiber. If, in addition, such classiber ensures

impact parity, it is easy to show that its utility cannot be larger than a preferred treatment classiber
consisting of group-conditional classibers.

N Preferred impact: a classibet offers preferred impact over a classibérensuring impact
parity if it achieves higher group benebt for each sensitive attribute value greup,

B,(!)&B,(!") foralz!Z . 4)
One can also rewrite the above condition for group-conditional classireers, = {! ;} 74z
and! = {!,},4z , as follows:

B.(';) &B,(!,) forallz!Z . (5)
Note that, given any classibPer ensuring impact parity, it is easy to show that there will always
exist a preferred impact classiBewith equal or higher utility.



Connection to the fair division literature. Our notion of preferred treatment is inspired by the
concept of envy-freenes§,[31] in the fair division literature. Intuitively, an envy-free resource
division ensures that no user woudcefer the resources allocated another user over their own
allocation. Similarly, our notion of preferred treatment ensures envy-free decision making at the
level of sensitive attribute groups. Specibcally, with preferred treatment classibcation, no sensitive
attribute group woulgbrefer the outcomes from the classileéanother group.

Our notion of preferred impact draws inspiration from the two-person bargaining prob&in [

the fair division literature. In a bargaining scenario, given a base resource allocation (also called the
disagreement point), two parties try to divide some additional resources between themselves. If the
parties cannot agree on a division, no party gets the additional resources, and both would only get the
allocation specibed by the disagreement point. Taking the resources to be the benebcial outcomes,
and the disagreement point to be the allocation specibed by the impact parity classiber, a preferred
impact classiber offers enhanced benebts to all the sensitive attribute groups. Put differently, the
group benebts provided by the preferred impact classiber Pareto-dominate the benebts provided by
the impact parity classiber.

On individual-level preferences.Notice that preferred treatment and preferred impact notions are
debned based on the group preferences,whether agroup as a wholgrefers (or, gets more
benebcial outcomes from) a given set of outcomes over another set. It is quite possible that a set
of outcomes preferred by the group collectively is not preferred by cdndividualsin the group.
Consequently, one can extend our proposed notions to account for individual preferences as well,
i.e, a set of outcomes is preferred over anothallithe individuals in the group prefer it. In the
remainder of the paper, we focus on preferred treatment and preferred impact in the context of group
preferences, and leave the case of individual preferences and its implications on the cost of achieving
fairness for future work.

3 Training preferred classibers

In this section, our goal is training preferred treatment and preferred impact group-conditional
classibers.e, ! = {!,},4z , that maximize utility given a training s& = {(xi, Vi, z)}\; , where
(xi,¥i,z) "' f(x,y,2). Inboth cases, we will assume tHat:

I. Each group-conditional classiber is a convex boundary-based classiber. For ease of exposition,
in this section, we additionally assume these classiPers to be limedr; (x) = ! ] x, where
I, is a parameter that debPnes the decision boundary in the feature space. We relax the linearity
assumption in AppendiR and extend our methodology to a non-linear SVM classiber.

II. The utility functionU is debPned as the overall accuracy of the group-conditional classileers,
!

U() = Exyl{sign( (x)) = y}1=  Eyyp[{sign( ]x)= y}If (2). (6)
p4:74
lll. The group beneM, for users sharing the sensitive attribute vatue debned as their average
probability of being classibed into the positive cldss,

B2(!) = Exjz[I{sign(! (x)) = 1}] = Ex,[l{sign(! ; x) = 1}]. )

Preferred impact classiPers.Given a impact parity classiper with decision boundary parameters
{!,} 24z , one could think of Pnding the decision boundary paramétesk, 4, of a preferred impact
classiber that maximizes utility by solving the following optimization problem:

mi{nlirr}ﬂze "N yzyeo Hsign(Ix) =y}

subjectto o I{sign('Jx)=1}& x#Dzl{sign(!fx):l} forallz!Zz ,

(8)

whereD; = {(Xi,Yi,z) ! D| z = z} denotes the set of users in the training set sharing sensitive
attribute valuez, the objective uses an empirical estimate of the utility, dePned bg,Eand the
preferred impact constraints, debned by Eaqise empirical estimates of the group benebts, debned
by Eq.7. Here, note that the right hand side of the inequalities does not contain any variables and can
be precomputed.e., the impact parity classibef$,},s are given.

2Exploring the relaxations of these assumptions is a very interesting avenue for future work.



Unfortunately, it is very challenging to solve the above optimization problem since both the objective
and constraints are nonconvex. To overcome this difbculty, we minimize instead a convex loss
function!, (x,y), which is classiber dependefi,[and approximate the group benebts using a ramp
(convex) functiorr (x) = max(0, x), i.e.,

PR n 1 "
minimize " g (nyvz)#D!!Z(x,y)+ Juz 21 2)

(o -- .. ©

subjectto .o max(0,! 7x) & .o max(0,!,'x) forallz!Zz

which, for any convex regularizéf g, is a disciplined convex-concave program (DCCP) and thus
can be efbciently solved using well-known heuristigg][ For example, if we particularize the above
formulation to group-conditional (standard) logistic regression classlBeaad! , andL ,-norm
regularizer, then, E? adopts the following form:

minimize " N xyay 0GPV, T2)+ oy zII! 2|17 10
subjectto  ,p max(0,! 7x) & .o, max(0,!,'x) forallz!Z .
= | = 1
wherep(y = 1|x,! ;) e T
The constraints can similarly be added to other convex boundary-based classibers like linear SVM.
We further expand on particularizing the constraints for non-linear SVM in Appehdix

Preferred treatment classibers Similarly as in the case of preferred impact classibers, one could
think of Pnding the decision boundary parameféers} ,»z of a preferred treatment classiber that
maximizes utility by solving the following optimization problem:

:: Ni (x Y.z )#D I{Slgn(l ;X) f y}

subjectto .5 I{sign(';x)=1}& o, I{sign(' ;x)=1} forallz,z'!Z ,

whereD; = {(Xi,V¥i,z) ! D| z = z} denotes the set of users in the training set sharing sensitive
attribute valuez, the objective uses an empirical estimate of the utility, debPned by,End the
preferred treatment constraints, debPned by3¥gse empirical estimates of the group benebpts, debPned
by Eqg.7. Here, note that both the left and right hand side of the inequalities contain optimization
variables.

minimize
{12} (11)

However, the objective and constraints in the above problem are also honconvex and thus we adopt a
similar strategy as in the case of preferred impact classibers. More specibcally, we solve instead the
following tractable problem:

[ 1 "
m|{n!|[r}1|ze "N (xy2)#D I (x,y)+ suz 21 2)

, . (12)
subjectto 5. max(0,! Jx) & o, max(0,!]x) forallz,z'!Z ,

which, for any convex regularizéf 3, is also a disciplined convex-concave program (DCCP) and
can be efbciently solved.

4 Evaluation

In this section, we compare the performance of preferred treatment and preferred impact classibers
against unconstrained, treatment parity and impact parity classibers on a variety of synthetic and
real-world datasets. More specibcally, we consider the following classibers, which we train to
maximize utility subject to the corresponding constraints:

N Uncons an unconstrained classiber that resorts to group-conditional classibers. It violates
treatment parityNit trains a separate classibPer per sensitive attribute value groupNand potentially
violates impact parityNit may lead to different benepts for different groups.

N Parity: a parity classiPer that does not use the sensitive attribute group information in the decision
making, but only during the training phase, and is constrained to satisfy both treatment parityN
its decisions do not change based on the usersO sensitive attribute value as it does not resort to
group-conditional classibersNand impact parityNit ensures that the benebts for all groups are
the same. We train this classibPer using the methodology proposed by Zafa3&t.al. [

N Preferred treatmenta classiber that resorts to group-conditional classiPers and is constrained
to satisfy preferred treatmentNeach group gets the highest benepbt with its own classiPer than
any other groupOs classiber.
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Figure 2: [Synthetic data] Crosses denote group-0 (pointsavtl® ) and circles denote group-1.
Green points belong to the positive class in the training data whereas red points belong to the negative
class. Each panel shows the accuracy of the decision making scenario along with group tinebts (
andB;) provided by each of the classibers involved. For group-conditional classibers, cyan (blue)
line denotes the decision boundary for the classiber of group-0 (group-1). Parity case (panel (b))
consists of just one classiber for both groups in order to meet the treatment parity criterion.

N Preferred impact a classiber that resorts to group-conditional classibers and is constrained to
be preferred over thBarity classiber.

N Preferred both a classiber that resort to group-conditional classibPers and is constrained to satisfy
bothpreferred treatmenandpreferred impact

For the experiments in this section, we use logistic regression classibellsantbrm regularization.
We randomly split the corresponding dataset irnd®o-30%train-test folds 5 times, and report the
average accuracy and group benebts in the test folds. AppBridbscribes the details for selecting
the optimallL ,-norm regularization parameters. Here, we compute utilifyds the overall accuracy
of a classiber and group benebBs ) as the fraction of users sharing sensitive attritatieat are
classibed into the positive class. Moreover, the sensitive attribute is always himary! { 0, 1}.

4.1 Experiments on synthetic data

Experimental setup. Following Zafar et al. 3], we generate a synthetic dataset in which the uncon-
strained classibetJncong offers different benebts to each sensitive attribute group. In particular, we
generate20,000binary class labelg ! {* 1,1} uniformly at random along with their corresponding
two-dimensional feature vectors sampled from the following Gaussian distribugipnly. = 1) =

N ([2;2],[5,1;1,5]) andp(x|y = " 1) = N (" 2;" 2],[10, 1; 1, 3]). Then, we generate each sensi-

tive attribute from the Bernoulli distributiop(z = 1) = p(x |y = 1)/ (p(x |y = 1)+ p(x'ly = " 1)),

wherex " is a rotated version of, i.e., x" = [cos(#/ 8)," sin(#/ 8); sin(#/ 8), cos(#/ 8)]. Finally,

we train the pve classibers described above and compute their overall (test) accuracy and (test) group
benebpts.

Results.Figure2 shows the trained classibers, along with their overall accuracy and group benebpts.
We can make several interesting observations:

TheUnconsclassiber leads to an accuracy0d37, however, the group-conditional boundaries and
high disparity in treatment for the two groupgs 16 vs. 0.85) mean that it satisPes neither treatment
parity nor impact parity. Moreover, it leads to only a small violation of preferred treatmentNbenepts
for group-0 would increase slightly from 0.16 to 0.20 by adopting the classiPer of group-1. However,
this will not always be the case, as we will later show in the experiments on real data.

The Parity classiber satisbes both treatment and impact parity, however, it does so at a large cost in
terms of accuracy, which drops frodB7 for Unconsto 0.57 for Parity.

The Preferred treatmentlassiber (not shown in the bgure), leads to a minor change in decision
boundaries as compared to thaconsclassiber to achieve preferred treatment. Benebts for group-0
(group-1) with its own classiber afe20 (0.84) as compared t6.17 (0.83) while using the classiber

of group-1 (group-0). The accuracy of this classipd).&5.

The Preferred impactclassiber, by making use of a looser notion of fairness compared to impact
parity, provides higher benebts for both groups at a much smaller cost in terms of accuracy than the
Parity classiber@.76 vs. 0.57). Note that, while thé arity classiber achieved equality in benebts by
misclassifyingnegative examples from groupittio the positive class and misclassifyipgsitive
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Figure 3: The bgure shows the accuracy and benebpts received by the two groups for various decision
making scenarios. OPrf-treat.O, OPrf-imp.O, and OPrf-bothO respectively correspond to the classibers
satisfying preferred treatment, preferred impact, and both preferred treatment and impact criteria.
Sensitive attribute valuedandl1 denote blacks and whites in ProPublica COMPAS dataset and

NYPD SQF datasets, and women and men in the Adult datBs@t; ) denotes the benebts obtained

by groupi when using the classiPer of groppFor theParity case, we train just one classiPer for

both the groups, so the benebts do not change by adopting other groupOs classiber.

examples from group-ibto the negative class, tii&referred impactlassiber only incurs the former

type of misclassibcations. However, the outcomes oPtlederred impactlassiber do not satisfy the
preferred treatment criterion: group-1 would attain higher benebt if it used the classiber of group-0
(0.96 as compared t6.86).

Finally, the classiber that satispes preferred treatment and preferred ipefetr{ed both) achieves
an accuracy and benebts at par withmeferred impactlassiber.

We present the results of applying our fairness constraints on a non linearly-separable dataset with a
SVM classiber with a radial basis function (RBF) kernel in Appertdix

4.2 Experiments on real data

Dataset description and experimental setupWe experiment with three real-world datasets: the
COMPAS recidivism prediction dataset compiled by ProPublig}, the Adult income dataset from
UCI machine learning repositorg], and the New York Police Department (NYPD) Stop-question-
and-frisk (SQF) dataset made publicly available by NYRD These datasets have been used by a
number of prior studies in the fairness-aware machine learning literdatdraq, 32, 34, 33].

In the COMPAS dataset, the classibcation task is to predict whether a criminal defendant would
recidivate within two years (negative class) or not (positive class); in the Adult dataset, the task
is to predict whether a person earns more thad USD per year (positive class) or not; and, in

the SQF dataset, the task is to predict whether a pedestrian should be stopped on the suspicion
of having an illegal weapon or not (positive class). In all datasets, we assume being classibed as
positive to be the benebcial outcome. Additionally, we divide the subjects in each dataset into two
sensitive attribute value groups: women (grd)@nd men (grougd,) in the Adult dataset and blacks
(group-0) and whites (group-1) in the COMPAS and SQF datasets. The supplementary material



(AppendixD) contains more information on the sensitive and the non-sensitive features as well as the
class distributions.

Results. Figure3 shows the accuracy achieved by the bve classibers described above along with the
benebts they provide for the three datasets. We can draw several interesting obsetvations:

In all cases, thé&nconsclassiber, in addition to violating treatment parity (a separate classiber for
each group) and impact parity (high disparity in group benebts), also violates the preferred treatment
criterion (in all cases, at least one of group-0 or group-1 would benepbt more by adopting the other
groupOs classiber). On the other handP#riy classiber satispes the treatment parity and impact
parity but it does so at a large cost in terms of accuracy.

ThePreferred treatmentlassibPer provides a much higher accuracy tharPtréy classiberNits
accuracy is at par with that of thénconsclassiberNwhile satisfying the preferred treatment criterion.
However, it does not meet the preferred impact criterion. Hitegerred impactclassiber meets the
preferred impact criterion but does not always satisfy preferred treatment. Moreover, it also leads to a
better accuracy thearity classiber in all cases. However, the gain in accuracy is more substantial
for the SQF datasets as compared to the COMPAS and Adult dataset.

The classiber satisfying preferred treatment and preferred impeafe¢red both) has a somewhat
underwhelming performance in terms of accuracy for the Adult dataset. While the performance of
this classiber is better than tRarity classiber in the COMPAS dataset and NYPD SQF dataset, it is
slightly worse for the Adult dataset.

In summary, the above results show that ensuring either preferred treatment or preferred impact is
less costly in terms of accuracy loss than ensuring parity-based fairness, however, ensuring both
preferred treatment and preferred impact can lead to comparatively larger accuracy loss in certain
datasets. We hypothesize that this loss in accuracy may be partly due to splitting the number of
available samples into groups during trainingNeach group-conditional classiper use only samples

from the corresponding sensitive attribute groupNhence decreasing the effectiveness of empirical

risk minimization.

5 Conclusion

In this paper, we introduced two preference-based notions of fairnessNpreferred treatment and
preferred impactNestablishing a previously unexplored connection between fairness-aware machine
learning and the economics and game theoretic concepts of envy-freeness and bargaining. Then,
we proposed tractable proxies to design boundary-based classibers satisfying these fairness notions
and experimented with a variety of synthetic and real-world datasets, showing that preference-based
fairness often allows for greater decision accuracy than existing parity-based fairness notions.

Our work opens many promising venues for future work. For example, our methodology is limited
to convex boundary-based classibers. A natural follow up would be to extend our methodology to
other types of classibers,g, neural networks and decision trees. In this work, we debned preferred
treatment and preferred impact in the context of group preferences, however, it would be worth
revisiting the proposed debnitions in the context of individual preferences. The fair division literature
establishes a variety of fairness axiorfi§|[such as Pareto-optimality and scale invariance. It would

be interesting to study such axioms in the context of fairness-aware machine learning.

Finally, we note that while moving from parity to preference-based fairness offers many attractive
properties, we acknowledge it may not always be the most appropriate ratjoin some scenarios,
parity-based fairness may very well present the eventual goal and be more deS§irable [
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3Since the SQF dataset is highly skewed in terms of class distribu&i®@% points in the positive class) resulting in a trained classiber
predicting all points as positive (yet haviBg% accuracy), we subsample the dataset to have equal class distribution. Another option would be
using penalties proportional to the size of the class, but we observe that an unconstrained classiber with class penalties gives similar predictions
as compared to a balanced dataset. We decided to experiment with the balanced dataset since the accuracy drops in this dataset are easier to
interpret.

“The unfaimess in the SQF dataset is different from what one would ex3@8ign unconstrained classiPer gives more benebts to blacks
as compared to whites. This is due to the fact that a larger fraction of stopped whites were found to be in possession on an illegal weapon
(Tables3 and4 in AppendixD).
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A Particularizing fairness constraints for non-linear SVM

For a non-linear SVM, given a training dataget {(xi,yi, z)}N, , one typically bnds the optimal
decision boundary parametérsby solving the dual of the corresponding optimization problégj,[
which takes the following form:

minjmize 1" TG" " 17"

subjectto 0( " ( C,

y™ =0

where" =[$1,%,,...,$n]" are the optimization variables specifying the decision boungazy,
[y1,Y2,...,yn]" are the class labels, a@lis theN ) N Gram matrix withGi; = yiy; k(Xi, X;).

Here, the kernel functiork(x;, xj) = %Xx;) a%Xx;) denotes the inner product between a pair of
transformed feature vectors. Then, given an unknown data porte computey = sign(" (x))
where" (x) = iN:1 $iyik(x,x;i) where" (x) can still be interpreted as the signed distance from
the decision boundary.

Given, this specibcation, one can particularize Efpr training group-conditional preferred impact
non-linear SVMs as;,
ml{rlln.;lze Sz %n 'Zl'GZu . n 1T n .
subjectto O( ", ( C, forallz!Zz ,
yi",=0 forallz!'Zz ,.
x#p, Max(0," z(x)) & ,up, max(0," ,(x)) forallz!Z ,

where{" !Z}Z#Z are the given parity impact classibers &hgandy, denote the Gram matrix and
class label vector for the sensitive attribute graup

One can similarly particularize EG2 for training group-conditional preferred treatment non-linear
SVMs as:

minimize  ,,, 3" 1G;"." 17",
subjectto 0( ", ( C, forallz!Z ,

yl",=0 forallz!Z ,
x#p, Max(0," (X)) & 4, Mmax(0," 21(x)) forallz,z’!Z .

One can similarly add the constraints to the non-linear SVM in the primal f8fm [

B Experimental details

In this section, we provide details for selecting the optitnainorm regularization parameters)(for
the experiments performed in SectidnFor performing the validation procedure below, we prst split
the training dataseD(4in ) further into a70%-30%train set Dy ) and a validation seli4 ). Then,

foragivenrangd = {"1,"2,...,"k} of candidate values, we select the optimal ones as follows.

Unconstrained and parity classiPersThese cases consisttéining one classiber at a timé&or
the unconstrained classiber, we train one classiber for each sensitive attribute group separately. For
the parity classiber, we train one classipber for all groups.

For each value df | L, we train the classiber ddy, , and choose the one that provides best accuracy
on the validation seb,, . We call it" °Pt, We then train the classiber on the whole training dataset
Dtrain Wlth " opt .

Preferentially fair classibers. Training preferentially fair classibers in Egjand Eq.12 consists of

jointly minimizing the objective function for both groups while satisfying the fairness constraints.
For training these classibers for two groups (say group-0 and group-1), we take all combinations of
"0,"1! L, and choose the combination that provides best accuray grwhile satisfying the
constraints. For real-world datasets, we specify the following tolerance level for the constraints: for a
given pair of'9," 1 ! L, we consider the constraints to be satisped if the observed value of group
benebtd, in the validation seD, 5 and the desired value are at least witBb?oof each other, and
additionally, the difference between them is no more €@8. We notice that setting hard thresholds
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Figure 4: [Non linearly separable synthetic data] Crosses denote group-0 (poinswith and

circles denote group-1. Green points belong to the positive class in the training data whereas red
points belong to the negative class. Each panel shows the classibers with top row containing the
classibers for group-0 and the bottom for group-1, along with the overall accuracy as well as the
group benebtsB andB;) provided by each of the classibers involved. For parity classiber, no
group-conditional classibers are allowed, so both top and bottom row contain the same classiber.

with no tolerance on real-world datasets sometimes leads to divergent solutions in terms of group
benebts. We hypothesize that this effect may be due to the underlying variance beywvesl
Dval .

C Experiments with non-linear SVM

In this section, we demonstrate the effectiveness of our constraints in ensuring fairness on a non
linearly-separable dataset with a SVM classiber using radial basis function (RBF) kernel.

Following the setup of Zafar et al3§], we generated a synthetic dataset consisting@¥0 user
binary class labels uniformly at random. We then assign a 2-dimensional user feature vector to each
label by drawing samples from the following distributions:

p(xly=1,&) = &N([2;2],[5 1;15)) + (1" &N([" 2" 2],[10 1;1 3))
p(x]ly = " 1,& = &N([4;" 4],[4 4,2 5]) + (1" &N([" 4;6][6 2;2 3])

where& ! { 0,1} is sampled fronBernoulli(0.5). We then generate the corresponding user sensitive
attributesz by applying the same rotation as detailed in Section

We then train the various classibers described in Sedtidie results are shown in Figude Top

row in the bPgure shows the group-conditional classibers for group-0, whereas, the bottom row shows
the ones for group-1. For the case of parity classiber, due to treatment parity condition, both groups
use the same classiber.

TheUnconsclassiber leads to an accuracy0d¥6, however, the group-conditional classibers lead
to high disparity in benebcial outcomes for both group87vs. 0.87). The classiPer also leads to
a violation of preferred treatmentNthe benebpts for group-0 would increase @rovwith its own
classiber t®.17 with the classiber of group-1.

The Parity classiber satisbes both treatment and impact parity, however, it does so at a large cost in
terms of accuracy, which drops frod®6 for Unconsto 0.61 for Parity.

The Preferred treatmentlassiber, adjusts the decision boundary for group-0 to remove envy and
does so at a small cost in accuracy (froréi6to 0.93).

The Preferred impactclassiber, by making use of the relaxed parity-fairness conditions, provides
higher or equal benebts for both groups at a much smaller cost in terms of accuracy tRarityhe
classiber@.84 vs. 0.61). The preferred impact classiber in this case also satisbes the preferred
treatment criterion.
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D Dataset statistics

For the ProPublica COMPAS dataset, we use the same non-sensitive features as used by Zafar et
al. [32]. The non-sensitive features include number of prior offenses, the degree of the arrest charge
(misdemeanor or felonygtc. The class and sensitive attribute distribution in the dataset is in Table

Table 1: Recidivism rates in ProPublica COMPAS data for both races.
Race Yes (-ve) No (+ve) Total
Black 1,661(52%) 1514(48%) 3175
White 8,22(39%) 1281(61%) 2103
Total 2,483(47%) 2795(53%) 5278

For Adult datasetd], we use the same non-sensitive features as a number of prior stidi&8[34]

on fairness-aware learning. The non-sensitive features include educational level of the person, number
of working hours per week, etc. The class and sensitive attribute distribution in the dataset is as
follows in Table2.

Table 2: High income& 50K USD) in Adult data for both genders.
Gender Yes (+ve) No (-ve) Total
Males  9,539(31%) 20988(69%) 30527
Females 1,669(11%) 13026(89%) 14695
Total  34,014(75%) 11208(25%) 45222

For the NYPD SQF dataset]} we use the same prediction task and non-sensitive features as used by
Goel et al. R9]. We only use the stops made in 2012. The prediction task is, whether a pedestrian
stopped on the suspicion of having a weapon actually possesses a weapon or not. The non-sensitive
features include proximity to a crime scene, age/build of a person, and so on. Finally, as explained
in Section4, since the original dataset (Tali is highly skewed towards the positive class we
subsample the majority class (positive) to match the size of the minority (negative) class.

Table 3: Persons found to be in possession of a weapon in 2012 NYPD SQF dataset (original).
Race Yes (-ve) No (+ve) Total
Black 2,113(3%) 77337(97%) 79450
White 803(15%) 4616(85%) 5419
Total 2,916(3%) 81953(97%) 84869

Table 4: Persons found to be in possession of a weapon in 2012 NYPD SQF dataset (class-balanced).
Race Yes (-ve) No (+ve) Total
Black 2,113(43%) 2756(57%) 4869
White  803(83%) 160(17%) 963
Total 2,916(50%) 2916(50%) 5832
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