The LCFI website uses cookies only for anonymised website statistics and for ensuring our security, never for tracking or identifying you individually. To find out more, and to find out how we protect your personal information, please read our privacy policy.

From Parity to Preference-based Notions of Fairness in Classification

Conference Paper by Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, Krishna P. Gummadi, Adrian Weller

From Parity to Preference-based Notions of Fairness in Classification

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA

The adoption of automated, data-driven decision making in an ever expanding range of applications has raised concerns about its potential unfairness towards certain social groups. In this context, a number of recent studies have focused on defining, detecting, and removing unfairness from data-driven decision systems. However, the existing notions of fairness, based on parity (equality) in treatment or outcomes for different social groups, tend to be quite stringent, limiting the overall decision making accuracy. In this paper, we draw inspiration from the fair-division and envy-freeness literature in economics and game theory and propose preference-based notions of fairness -- given the choice between various sets of decision treatments or outcomes, any group of users would collectively prefer its treatment or outcomes, regardless of the (dis)parity as compared to the other groups. Then, we introduce tractable proxies to design margin-based classifiers that satisfy these preference-based notions of fairness. Finally, we experiment with a variety of synthetic and real-world datasets and show that preference-based fairness allows for greater decision accuracy than parity-based fairness.

Download Conference Paper